Mesin Bertenaga 7000-8300 dk
Scuto Laminating Simota CRC Indonesia

25 Mei 2016 - Payment System Terbaru Untuk Bursa Jual Beli telah kami hadirkan.
Untuk informasi lebih lengkap dapat dilihat di http://modifika.si/630917

Page 1 of 2 12 LastLast
Results 1 to 10 of 17
  • Thread Tools
  • Short URL:  http://modifika.si/75812
  • Share on facebook
  • Share on twitter
  1. #1
    Kapten
    Location
    Bonex, Surabaya
    Posts
    2,664
    Power
    15 
    M-Store Point
    0
    Online
    13 Hrs 42 Mins 5 Secs

    Mesin Bertenaga 7000-8300 dk

    Clocked Speed = 314 mph (506 km/h), Kwinana Race Track, W.A., 2005
    Top fuel dragster time (4.567 sec at 321 mph or 516 km/h)

    Ini adalah fakta keberingasan mesin Top Fuel
    Bayangkan jika satu unit mobil tersebut di bawa ke Indonesia
    Entah cukup atau tidak lintasan yang digunakan

    Top Fuel Engine
    Top-Fuel Racing refers to a class of drag racing in which the cars are run on a maximum of 85% nitromethane and about 15% methanol (also known as racing alcohol), instead of gasoline. The cars are purpose built race cars, with a layout superficially resembling open-wheel circuit racing vehicles - however, they are much longer, much narrower, and have very thin front tyres, to optimize their performance exclusively in a straight line.

    Like other drag racing classes, these cars compete in a 1/4 mile (0.4 km) race. They are the fastest such category, with the fastest cars completing it in less than 4.5 seconds at upwards of 330 mph (530 km/h). A Top Fuel dragster accelerates from 0 to 100 mph (160 km/h) in less than 0.8 seconds, subjecting the driver to a force about 5.7 times his weight. This acceleration takes less than a tenth of the time needed by a production Porsche 911 Turbo to reach the same speed. A fuel dragster can exceed 280 mph (450 km/h) in just 660 feet (0.2 km). For further information and standards for drag-racing, including safety requirements, see NHRA.

    Facts about Top Fuel
    Before their run, they do a burnout. This is done for three reasons. First, after applying some water, it heats the tires up, which results in better traction. Secondly, it removes debris from the tires. Thirdly, and most importantly, it coats the track surface with rubber which greatly improves traction during the subsequent launch. A top fuel dragster's burnout alone can travel one quarter of the way down the track.

    At top engine speed, the exhaust gases escaping from the open headers produce about 800-1000 pounds-force (3.6 kilonewtons) of downforce. The massive foil over and behind the rear wheels produces much more downforce, peaking at around 12,000 lbf when the car reaches a speed of about 325 mph.

    Top Fuel dragsters are notorious for the deafening amount of noise their engines create-at full throttle. They generate over 150 dB, enough to cause some peoples' eardrums physical pain. The intense levels of sound are not only heard, but also felt as pounding vibrations all over one's body, leading many to compare the experience of watching a Top Fuel dragster make a pass to 'feeling as though the entire drag strip is being bombed'. Prior to the dragsters going down the strip, race announcers usually advise spectators to cover or plug their ears—indeed, ear plugs and even earmuffs are often handed out to fans at the entrance to a Top Fuel event.

    The Fuel
    NHRA regulations limit the composition of the fuel to a maximum of 85% nitromethane; the remainder is largely methanol. However, this mixture is not mandatory, and less nitromethane can be used if desired.

    Kenny Bernstein was the first drag racer in NHRA history to break 300 mph in the 1/4 mile in March, 1992. Kenny took his digger (slang for dragster) over 300 mph using a mixture of 90-to-100% nitromethane at the time. Despite nitromethane having a much a lower energy density (11.2 MJ/kg) than either gasoline (44 MJ/kg) or methanol (22.7 MJ/kg), its addition to the fuel mixture has the net effect of increasing engine output by around 2.3 times compared to gasoline for the same mass of air.

    The high temperature of vaporization of nitromethane also means that it will absorb substantial engine heat as it vaporizes, providing an invaluable cooling mechanism. Compared to gasoline the laminar flame speed and combustion temperature are higher at 0.5 m/s and 2400°C respectively. Power output can be increased by using very rich air fuel mixtures. This is also something that helps prevent detonation, something that is usually a problem when using nitromethane.

    Due to the relatively slow burn rate of nitromethane, very rich fuel mixtures are often not fully ignited and some remaining nitromethane can escape from the exhaust pipe and ignite on contact with atmospheric oxygen, burning with a characteristic yellow flame. Additionally, after sufficient fuel has been combusted to consume all available oxygen, nitromethane can combust in the absence of atmospheric oxygen, producing hydrogen, which can often be seen burning from the exhaust pipes at night as a bright white flame. In a typical run the engine can consume as much as 103 litres (22.75 gallons) of fuel during warmup, burnout, staging, and the quarter-mile run.

    Like many other motor sport formulas originating in the United States, the NHRA favors heavy restrictions on engine configuration, rather than technological development. This restricts the teams to using many decades old technologies.

    The engine used to power a Top Fuel drag racing car has its roots in the second generation Chrysler Hemi 426 "Elephant Engine" made 1964-71. Although the Top Fuel engine is built exclusively of aftermarket parts, it retains the basic configuration with two valves per cylinder activated by pushrods from a centrally-placed camshaft. The engine has hemispherical combustion chambers, a 90 degree V angle; 4.8" bore pitch and a 5.4" cam lift. The configuration is identical to the overhead valve, single camshaft-in-block "Hemi" V-8 engine which became available for sale to the public in selected Chrysler Corporation (Dodge, DeSoto, and Chrysler) automotive products in 1952.

    The NHRA competition rules limit the displacement to 500 cubic inch (8193.5 cc). A 4.19" (106.4 mm) bore with a 4.5" (114.3 mm) stroke are customary dimensions. Larger bores have been shown to weaken the cylinder block. Compression ratio is about 6.5:1, as is common on engines with overdriven (the supercharger is driven faster than the crankshaft speed) superchargers.

    The block is CNC machined from a piece of forged aluminium. It has press-fitted ductile iron liners. There are no water passages in the block which adds considerable strength and stiffness. Like the original Hemi, the racing cylinder block has a long skirt (to reduce piston "rocking" at the lower limit of piston travel); there are five main bearing caps which are fastened with aircraft-standard-rated steel studs; with additional reinforcing main studs and side bolts. There are three approved suppliers of these custom-made after-market blocks, from which the teams may choose.

    The cylinder heads are CNC-machined from aluminum billets. As such, they have no water jackets and rely entirely on the incoming air/fuel mixture for their cooling. The original Chrysler design of two large valves per cylinder is used. The intake valve is made from solid titanium and the exhaust from solid Nimonic 80A or similar. Seats are of ductile iron, beryllium-copper have been tried but its use is limited due to cost. Valve sizes are around 2.45" (62.2 mm) for the intake and 1.925" (48.9 mm) for the exhaust. In the ports there are integral tubes for the push rods. The heads are sealed to the block by copper gaskets and stainless steel o-rings. Securing the heads to the block is done with aircraft-rated steel bolts.

    The camshaft is billet steel, made from 8620 carbon steel or similar. It runs in five oil pressure lubricated bearing shells and is driven by gears in the front of the engine. Mechanical roller lifters ride atop the cam lobes and drive the steel push rods up into the steel rockers that actuate the valves. The rockers are of roller type on the intake side, high pressures on the exhaust limits its use to the intake side only. The steel roller rotates on a steel roller bearing and the steel rocker arms rotates on a titanium shaft within bronze bushings. Intake rockers are billet while the exhausts are investment cast. The dual valve springs are of coaxial type and made out of titanium. Valve retainers are also made of titanium, as are the rocker covers.

    Billet steel crankshafts are used; they all have a cross plane a.k.a. 90 degree configuration and runs in five conventional bearing shells. 180 degree crankshafts have been tried and they can offer increased power, even though the exhaust is of open type. A 180 degree crankshaft is also about 10 kg lighter than 90 degree crankshaft, but they create a lot of vibration. Such is the strength of a top fuel crankshaft that in one incident, the entire engine block was split open and blown off the car during an engine failure, and the crank, with all eight connecting rods and pistons, was left still bolted to the clutch.

    Pistons are of forged aluminium, 2618 alloy. They have three rings and aluminium buttons retain the 1.156" x 3.300" steel pin. The piston is anodized and Teflon coated to prevent galling during high temperature operation. The top ring is an L-shaped Dykes ring that provides a good seal during combustion but a second ring must be used to prevent oil from entering the combustion chamber during intake strokes as the Dykes-style ring offers less than optimal combustion gas sealing. The third ring is an oil scraper ring whose function is helped by the second ring. The connecting rods are of forged aluminium and do provide some shock damping, which is why aluminum is used in place of titanium, because titanium connecting rods transmit too much of the combustion impulse to the big-end rod bearings, endangering the bearings and thus the crankshaft and block. Each con rod has two bolts, shell bearings for the big end while the pin runs directly in the rod.

    The supercharger is a 14-71 type Roots blower. It has twisted lobes and is driven by a toothed belt. The supercharger is slightly offset to the rear to provide an even distribution of air. Absolute manifold pressure is usually 3.8-4.5 bar (56-66 PSI), but up to 5.0 bar (74 PSI) is possible. The manifold is fitted with a 200 psi burst plate. Air is fed to the compressor from throttle butterflies with a maximum area of 65 sq. in. At maximum pressure, it takes approximately 400 horsepower to drive the supercharger.

    These superchargers are in fact derivatives of General Motors scavenging-air blowers for their two-cycle diesel engines, which were adapted for automotive use in the early days of the sport. The model name of these superchargers delineates their size; i.e. the once commonly used 6-71 and 4-71 blowers were designed for General Motors diesels having six cylinders of 71 cubic inches each, and four cylinders of 71 cubic inches each, respectively. Thus, the currently used 14-71 design can be seen to be a huge increase in power delivery over the early designs.

    Mandatory safety rules require a secured Kevlar-style blanket over the supercharger assembly as "blower explosions" are not uncommon. The absence of a protective blanket exposes the driver, team and spectators to shrapnel in the event that nearly any irregularity in the induction of the air/fuel mixture, the conversion of combustion into rotating crankshaft movements, or in the exhausting of spent gasses is encountered.

    The oil system has a wet sump which contains 16 quarts of SAE 70 mineral or synthetic racing oil. The pan is made of titanium or aluminium. Titanium can be used to prevent oil spills in the event of a blown rod. Oil pressure is somewhere around 160/170 lb during the run, 200 lb at start up, but actual figures differs between teams.

    Fuel is injected by a constant flow injection system. There is an engine driven mechanical fuel pump and about 42 fuel nozzles. The pump can flow 100 gallons/minute at 8000 rpm and 500 PSI fuel pressure. In general 10 injectors are placed in the injector hat above the supercharger, 16 in the intake manifold and two per cylinder in the cylinder head. Usually a race is started with a leaner mixture, then as the clutch begins to tighten as the engine speed builds, the air/fuel mixture is enriched. As engine speed builds pump pressure the mixture is made leaner to maintain a predetermined ratio that is based on many factors, one of which is primary one of race track surface friction. The stoichiometry of both methanol and nitromethane is considerably greater than that of racing gasoline, as they have oxygen atoms attached to their carbon chains and gasoline does not. This means that a "fueler" engine will provide power over a very broad range from very lean to very rich mixtures. Thus, to attain maximum performance, before each race, by varying the level of fuel supplied to the engine, the mechanical crew may select power outputs barely below the limits of tire traction. Power outputs which create tire slippage will "smoke the tires" and the race is often lost.

    The air/fuel mixture is ignited by two 14 mm spark plugs per cylinder. These plugs are fired by two 44-amp magnetos. Normal ignition timing is 58-65 degrees BTDC. (This is dramatically greater spark advance than in a gasoline engine as "nitro" and alcohol burn far slower.) Directly after launch the timing is typically decreased by about 25 degrees for a short time as this gives the tires time to reach their correct shape. The ignition system limits the engine speed to 8400 rpm. The ignition system provides initial 50,000 volts and 1.2 amps. The long duration spark (up to 26 degrees) provides energy of 950 millijoules. The plugs are placed in such a way that they are cooled by the incoming charge. The ignition system is not allowed to respond to real time information (no computer-based spark lead adjustments), so instead a timer-based retard system is used.

    The engine is fitted with open exhaust pipes, 2.75" in diameter and 18" long. These are made of steel and fitted with thermocouples for measuring of the exhaust temperature. They are called "zoomies" and exhaust gases are directed upward and backwards. Exhaust temperature is about 260 °C at idle and 980 °C by the end of a run. A night run provides visual excitement with slow-burning nitromethane flames many feet above this screaming spectacle of acceleration. A "good run" is over in just 4.5 seconds, the noise ends, and braking parachutes are seen in the distance, after a speed of over 325 miles per hour has been reached.

    The engine is warmed up for about 80 seconds. After the warm up the valve covers are taken off, oil is changed and the car is refueled. The run including tire warming is about 100 seconds which results in a "lap" of about three minutes. After each lap, the entire engine is disassembled and examined, and worn or damaged components are replaced.

    Performance
    Power output of these engines is most likely somewhere between 7000 and 8300 horsepower (approximately 4500-6000 kilowatts). It is often inexplicably stated that no dynamometer exists that can measure the output of a Top Fuel Engine. Dynamometers capable of measuring tens of thousands of horsepower at relevant shaft speeds are in widespread use. Estimates suggest a torque output of 5100-6750 Nm (3760-4980 lb-ft) and also a brake mean effective pressure of 80-100 bar.

    For the purposes of comparison, a 2006 SSC Ultimate Aero, the world's fastest production automobile, produces 1183 bhp horsepower and 1094 lb./ft.torque.

    Engine weight

    * Block with liners 85 kg
    * Heads 18 kg each
    * Crankshaft 37 kg
    * Complete engine 225 kg.

    Mandatory safety equipment
    Much of organized drag-racing is sanctioned by the National Hot Rod Association. Since 1955, the Association has held regional and national events (typically organized as single elimination tournaments, with the winner of each two car race advancing) and has set rules for safety, with the more powerful cars requiring ever more safety equipment.

    Typical safety equipment for contemporary top fuel dragsters: full face helmets with fitted HANS devices; multi-point, quick release safety restraint harness; full body fire suit made of Nomex or similar material, complete with face mask, gloves, socks and shoes, all made of fire-resistant materials; on board fire extinguishers; kevlar or other synthetic "bullet-proof" blankets around the superchargers and clutch assemblies to contain broken parts in the event of failure or explosion; damage resistant fuel tank, lines, and fittings; externally accessible fuel and ignition shut-offs (built to be accessible to rescue staff); braking parachutes; and a host of other equipment, all built to the very highest standards of manufacturing. Any breakthrough or invention that is likely to contribute to driver, staff, and spectator safety is likely to be adopted as a mandated rule for competition. The forty year history of NHRA has provided hundreds of examples of safety upgrades.

    In 2000, the NHRA mandated the maximum concentration of nitromethane in a car's fuel be no more than 90%. Following an incident at a national event in 2004 in Madison, IL in which Top Fuel driver Darrell Russell was killed, the NHRA cut the fuel ratio to the present 85%. The NHRA also mandated that different rear tires be used (in both Top Fuel and Funny Car) to try to prevent them from failing and that a titanium "shield" be attached around the back-half of the roll-cage in Top Fuel Dragsters (although some Funny Car teams adopted this) to prevent any debris from entering the cockpit.

    At present, final drive ratios lower than 3.20 (3.2 engine rotations to one rear axle rotation) are prohibited, in an effort to limit top speed potential, thus reducing the perceived level of danger.

  2. 36Goal.com
  3. #2
    Letnan Jendral
    Location
    Palembang.
    Posts
    27,744
    Power
    167 
    M-Store Point
    0
    Online
    6 Days 10 Hrs 51 Mins 52 Secs
    yaaah bahasa inggris...
    mane ngertttos
    SOHC VTEC

  4. #3
    Kolonel
    Posts
    9,095
    Power
    42 
    M-Store Point
    0
    Online
    3 Mths 3 Days 13 Hrs 16 Secs
    walah bhs inggris ga mudeng g

  5. #4
    Kapten
    Location
    Jakarta
    Posts
    2,777
    Power
    13 
    M-Store Point
    0
    Online
    1 Day 3 Hrs 58 Mins 42 Secs
    mantaf....

    baru tau gw mesin TopFuel Pure Air cooling... kayak motor vespa gw..hehehe
    0812-182-862-05

  6. #5
    Kapten
    Location
    Palembang
    Posts
    2,681
    Power
    12 
    M-Store Point
    0
    Online
    14 Hrs 53 Mins 38 Secs
    Terjemahannya ?

  7. #6
    Letnan Dua
    Location
    depok timur, jakarta, semarang, samarinda, makassar
    Posts
    1,324
    Power
    12 
    M-Store Point
    0
    Online
    5 Days 6 Hrs 7 Mins 50 Secs
    aduh ga ada saritilawahnya nih...bingung

  8. #7
    Letnan Dua
    Location
    Surabaya - Sidoarjo
    Posts
    1,192
    Power
    M-Store Point
    0
    Online
    N/A
    gak ngerti pake inglis sih....

  9. #8
    Kopral Dua
    Location
    surabaya
    Posts
    30
    Power
    M-Store Point
    0
    Online
    N/A
    ada yg mau terjemahan bahasa madura nggak....he...he...abellok kirri....abbellok kannann...

  10. #9
    Kolonel
    Location
    Manado-Sulawesi Utara
    Posts
    7,517
    Power
    M-Store Point
    0
    Online
    1 Day 17 Hrs 25 Mins 44 Secs
    Mesinnya seberat 200 kg lebih di taruh di tengah hampir ke blakang... Salah satu trik distribusi bobot yang sangat bagus mengingat mobil top fuel tarikan blakang dan depannya udah super enteng...
    "When The VTEC On, Catch Me If You Can"

  11. #10
    Kapten
    Location
    J* Town
    Posts
    2,321
    Power
    M-Store Point
    0
    Online
    1 Day 8 Hrs 18 Mins 41 Secs
    waks... kaga ngarti gua.. tapi yg jelas sadis tuh mesin...gokil..... boros bngt pula... huaaaaaaaaaa.....
    kalo di suruh test gua kaga mau......serem bngt....suaranya seh kenceng bngt 150db... itu kalo ngak di gas yah? kalo di bejek... ???? ampun.............
    tekanan G nya gokil.........kalo ngak kuat pingsan neh...........
    ckck..........
    ada yg mau coba? hehehehehehhe.............ihhhhhhh serem...........

 

 
Page 1 of 2 12 LastLast
Vkool Mitsubishi

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

Similar Threads

  1. civic ferio Menginginkan mesin yang bertenaga
    By ezzarezza in forum Honda
    Replies: 2
    Last Post: 10th September 2012, 17:29
  2. Mesin Innova Menggelitik dan Tidak Bertenaga
    By ivan_gtalo in forum Diskusi Mesin
    Replies: 7
    Last Post: 23rd April 2012, 01:07
Back to top